site banner

Friday Fun Thread for September 6, 2024

Be advised: this thread is not for serious in-depth discussion of weighty topics (we have a link for that), this thread is not for anything Culture War related. This thread is for Fun. You got jokes? Share 'em. You got silly questions? Ask 'em.

2
Jump in the discussion.

No email address required.

Before you are three closed, identical boxes. The first box contains two silver coins and nothing else. The second box contains two gold coins and nothing else. The third box contains two coins (one gold and one silver) and nothing else. You have no idea which box is which, you cannot see inside the boxes, and they are mounted to the wall so you cannot lift them to estimate their weight.

You reach your hand into one of the boxes and withdraw a gold coin. If you reach into the same box to withdraw the second coin, what is the probability that that coin is also gold?

It's 66%. You know that the box you withdrew the first coin from can't be the box with two silver coins in it, so it must be one of the other two boxes. There are exactly three coins remaining in these two boxes combined, one of which is silver and the others gold. Ergo the odds of you withdrawing a second gold coin are 2/3.

This puzzle was shared on a Facebook meme page I follow. I'm not trying to flex or anything, but I solved it instantly and the solution seems incredibly obvious to me. I was very surprised to see the comments full of people asserting that the answer is 50%. There's even a Wikipedia article about it, and it's referred to as a "paradox". One of my pet peeves is when the word "paradox" is used to refer to mathematical problems with counterintuitive solutions, or counterintuitive findings from the sciences - as opposed to contradictions in logic. Russell's paradox is a legitimate paradox: there is no good answer to the question "if a barber only shaves men who do not shave themselves, does he shave himself?" The "twin paradox" in general relativity isn't actually a paradox, but I can see how it runs counter to our human intuition of how things work in Mediocristan. But in this case, I don't think this particular puzzle even rises to the level of "mathematical problem with a counterintuitive solution": the solution seems incredibly obvious and straightforward. The word "paradox" gets used far too freely.

I’m convinced this is easy to explain to pretty much anyone, just by making clear that the fact that you chose gold first makes the double-gold box more likely than the mixed box because coins of the same type are fungible.

Like the Monty hall problem, people who make the mistake do so not (necessarily) because they’re stupid, but because they just haven’t been taught to think carefully about the “given that” aspect of these probability questions.

If you pick a gold coin in box A, you have a 100% chance of getting a second gold. If you pick a gold coin in box B, you have a 0% chance of getting a second gold. (100+0)/2 does indeed equal 50. But the first gold was clearly twice as likely to come from the double-gold bucket as the mixed bucket, which means that the chance of a second gold is obviously also higher.